Using PVS to validate the algorithms of an exact arithmetic
نویسندگان
چکیده
The whole point of exact arithmetic is to generate answers to numeric problems, within some user-speci1ed error. An implementation of exact arithmetic is therefore of questionable value, if it cannot be shown that it is generating correct answers. In this paper, we show that the algorithms used in an exact real arithmetic are correct. A program using the functions de1ned in this paper has been implemented in ‘C’ (a HASKELL version of which we provide as an appendix), and we are now convinced of its correctness. The table presented at the end of the paper shows that performing these proofs found three logical errors which had not been discovered by testing. One of these errors was only detected when the theorems were validated with PVS. c © 2002 Elsevier Science B.V. All rights reserved.
منابع مشابه
Exact and approximate solutions of fuzzy LR linear systems: New algorithms using a least squares model and the ABS approach
We present a methodology for characterization and an approach for computing the solutions of fuzzy linear systems with LR fuzzy variables. As solutions, notions of exact and approximate solutions are considered. We transform the fuzzy linear system into a corresponding linear crisp system and a constrained least squares problem. If the corresponding crisp system is incompatible, then the fuzzy ...
متن کاملSolving a nurse rostering problem considering nurses preferences by graph theory approach
Nurse Rostering Problem (NRP) or the Nurse Scheduling Problem (NSP) is a complex scheduling problem that affects hospital personnel on a daily basis all over the world and is known to be NP-hard.The problem is to decide which members of a team of nurses should be on duty at any time, during a rostering period of, typically, one month.It is very important to efficiently utilize time and effort, ...
متن کاملDynamical Control of Computations Using the Family of Optimal Two-point Methods to Solve Nonlinear Equations
One of the considerable discussions for solving the nonlinear equations is to find the optimal iteration, and to use a proper termination criterion which is able to obtain a high accuracy for the numerical solution. In this paper, for a certain class of the family of optimal two-point methods, we propose a new scheme based on the stochastic arithmetic to find the optimal number of iterations in...
متن کاملAlgorithm Xxx: Alphacertified: Certifying Solutions to Polynomial Systems
Smale’s α-theory uses estimates related to the convergence of Newton’s method to certify that Newton iterations will converge quadratically to solutions to a square polynomial system. The program alphaCertified implements algorithms based on α-theory to certify solutions of polynomial systems using both exact rational arithmetic and arbitrary precision floating point arithmetic. It also impleme...
متن کاملVeriication of Ieee Compliant Subtractive Division Algorithms
A parameterized deenition of subtractive oating point division algorithms is presented and veriied using PVS. The general algorithm is proven to satisfy a formal deenition of an IEEE standard for oating point arithmetic. The utility of the general speciication is illustrated using a number of diierent instances of the general algorithm.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Theor. Comput. Sci.
دوره 291 شماره
صفحات -
تاریخ انتشار 2003